THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5210 Discrete Mathematics 2017-2018 Assignment 4 (Due date: 19 Apr, 2018)

- 1. (a) Show that $x^3 + x^2 + 2$ is an irreducible polynomial in $\mathbb{Z}_3[x]$.
 - (b) Suppose that F be the field defined by $\mathbb{Z}_3[x]/\langle x^3 + x^2 + 2 \rangle$. If $\alpha = x^2 + x + 1, \beta = x^2 + 2 \in F$, find $\alpha + \beta$, $\alpha\beta$ and α^{-1} .
- 2. The parity check matrix of [15,11] binary Hamming code is given by

H =	$\left(\begin{array}{c} 0 \end{array}\right)$	0	0	0	1	1	1	1	1	1	1	1	0	0	0)	١
	1	1	1	0	0	0	0	1	1	1	1	0	1	0	0	
	0	1	1	1	0	1	1	0	0	1	1	0	0	1	0	·
	1	0	1	1	1	0	1	0	1	0	1	0	0	0	1 /)

What are the decoded vectors if $y_1 = (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1)$ and

 $y_2 = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1)$ are received?

3. Let $F = \mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle$ and let

be the generating matrix of a [5, 3] linear code C over the field F.

- (a) Find a parity check matrix of C and show that the minimum distance d(C) of C is 3.
- (b) Show that C is a perfect code.
- (c) What are the decoded vectors if $y_1 = (x, 1, 1 + x, x, 0)$ and $y_2 = (1, x, 1 + x, 1 + x, 1)$ are received?
- 4. Let C be a linear code over \mathbb{Z}_3 generated by the matrix

$$G = (\begin{array}{ccc} 1 & 2 & 1 \end{array}).$$

- (a) List all the codewords of C and show that the minimum distance d(C) is 3.
- (b) Find a parity check matrix of C and hence construct a table of coset leaders and syndromes.
- (c) Use the table constructed in (b) to decode the received vector (2, 0, 1).
- 5. (a) Show that $x^4 1 \in \mathbb{Z}_5[x]$ can be factorized as (x-1)(x-2)(x-3)(x-4).
 - (b) Let g(x) = (x-3)(x-4) and let C be the cyclic code C over \mathbb{Z}_5 generated by g(x). Show that d(C) = 3 and write down a generating matrix G and a parity check matrix H.
 - (c) What is the decoded vector if y = (2, 2, 4, 2) is received?

6. Suppose that F be the field defined by $\mathbb{Z}_2[y]/\langle y^4 + y + 1 \rangle$. Let $\alpha = y$.

(You may assume the fact that $y^4 + y + 1$ is an irreducible polynomial in $\mathbb{Z}_2[y]$.)

- (a) Show that α is a generator of the cyclic group $F^{\times} = F/\{0\}$. (Hint: Show that $\alpha^3, \alpha^5 \neq 1$.)
- (b) Show that $x^{15} 1 \in F[x]$ can be factorized as $(x 1)(x \alpha)(x \alpha^2) \cdots (x \alpha^{14})$.
- (c) Show that $\alpha, \alpha^2, \alpha^4, \alpha^8$ are all zeros of $x^4 + x + 1 \in F[x]$ and $\alpha^3, \alpha^6, \alpha^9, \alpha^{12}$ are all zeros of $x^4 + x^3 + x^2 + x + 1$. (Hint: $(x^4 + x + 1)^2 = x^8 + x^2 + 1$ and $(x^4 + x + 1)^4 = (x^8 + x^2 + 1)^2 = x^{16} + x^4 + 1$.)
- (d) If C is the linear code generated by $g(x) = (x^4 + x + 1)(x^4 + x^3 + x^2 + x + 1)$, show that $d(C) \ge 5$.